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38, Radicals of related algebras

The elementwise characterization of the radical allows us to quickly

compute the radicals of related algebras, and establish that semisimplicity

ia inherited by ideals and Palrce subalgebras. The caleulations leading up
to the Characterization Theorem are illuminated by interpreting them in suitable
homotopes. We characterize the radical by means of homotopes, then use this

to te-compute the radicals of related algebras.

We begin by characterizing the radical of & principal inner ideal.

8.1 (Proposition) The radical of a principal inner ideal B = bib i=
Rad(B) = {z& B|bzbg Rad A},
Proof. The condition is necessary for z to balong to Rad(B), since if

z € Rad B all (bzb)a = bl{z(ba)} € B{2B}eZ Rad(B) (uaing lefr Moufang) are gq.l.,

go bzb is p.q.i. in A and belongs to Rad(A). It is sufficient, for if

sz £ Rad(A) then for any c = hab in B we'have {3::]2 = z'UC: (Artin)
= Z'Uhﬂaﬂbz (middle Eundamental) & Lz'[].hﬂa {Rad A) ¢ Rad(A) gq.i., so all zc are

q.1, and z is p.qg.1l, in B. B

The most important case is the Peirce space shs,

g, (Corollary) For any idempotent e, Rad(ede) = eche /) Rad A. [

8.3 (Semisimplicity Inheritance Theorem for Peirce Subalgebras) 1If A is

semisimple, so is any Peirce subalgebra =be. Wl
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For left idesls we have

B.4 (Proposition) The radical of a left ideal B is

Rad(B) = {z& BBz & Rad(4)}.

Proof. If all bz lie dn Rad(A) 2ll bz are ¢.i. in A, hence In B, so =z
1z p.g.i. in B. Conversely, 1f z& Rad B then again 21l (ab)z & Bz (T Rad(B)

are q.1,, so albz) are g.1, by the x(y¥z), (zy)z - Lemma, and bz is p.q.1i. in A, @

BEWARE: This result doesn't apply to Ae for an idempotéent e since Ae needn't
aven be a subalpgebra; we have szeen in a splitc Cavley algehraq:that

Le = te +|f[_'=,31 is not a subalgebra since {31 = Elr] (zem T.1.15),

For ideals the criterion is more explicit.

8,5 (Radical Inheritance Thearem) The Jacobson-Smiley radical is hereditary:

the radical of zn ldeal B=<TA i=

Rad(B) = B¢} Rad(A).

Proof. If z¢& B{YRad(A) then Bz{Z Rad(A), so by the criterion B.4 for
left ideals z & Rad(B). (Or: B/ Rad{A) is an ideal in B which is q.i. in 4,
tence dn B, so lied in the padleal): Converselyy 1f =g Rad(B) then all
(aza)zg Bz are gq.i., so all {az}z are gq.i., all az are too, and z is p.q.i.

in A: =z @ Bad(a).
8.6 Corollary. Rad({A) = A Rad(i). W

B,7 (Semisimpliclty Inheritance Thecrem for Ideals). If A ls semisimple so

ig any ideal B<i4. M
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Remark, Since quasi-invertibility is a "strongly semiprime" radical property
{(A/Rad A 18 strongly semiprime) we could also use the argument of 6.4 to

eatablich hevedity without using an elementwise characterization.

Re-Iinterpretatlion via homotopes
(R,u)

(u)

A{u.L}

Both the left and right homotepes and A have the same Jordan

2(u)

structure: =x = Uxu and Uiuj --U;Hﬁ. We write A indiffarently to

denote the left or right uw-homotope. The derived y-operator is given by

I:u) = = = -
H* ¥ Xe Y Ux,yu vx,u}' F=te}
(u) _ 0¥ o o
{a.a8) Hﬁ ?x.u 5 Lx Lxuu'
This makes clear what the transveection operators are: Tx 5 =
. i
I - + Ul =1~ HEY} + U(F) = U{F} ie the U-pperator aof l{F}—x in the
ZH * * ()
1 -
v-homotope
(8.9) T =g
i (¥)
L x

Thus % is g.i. in A{y) iff Tx v iz bijective (or even contalns 1{?} in its image).

Since [1(?)—x}2{F] = l{y}_zx*xﬂ{yj = l{?}—zx+ny ie always 1in the image of 'I'x g’
(v) ’

wa asa ¥ i’ q.91. in A itk 74 [Txy—!?x iz in the dmage. Comparing wirh 7.711,

B3.10 (lawma) v i qod. dn A 4FE % fa qud 4o 4%, A

(v)

Loosely speaking, x has a certain property in 4 1ff =y has that property in A.
The xv,yx—Lemma and ﬁxfgg},{g?}z—Lemma have elegant formulatioma in terms

af homgtopes,
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8.11 (Symmetry Principle) =x is g.1. in A{F] 1ff y is q.1. in A{x].

Proof. x is q.t. in &) Exy is i Epyx 1s g.i. Epy is 1. in A ]

8,12 (Shifting Principle) The following conditions are equivalent:

(1)
(z)

(11)
(114}
(Lv)
(v)

(vl

Xy is q.1. In A

z is g.i. in A(x_‘r)

zx 1a g.i, in A_':Y:'

(zx)

Ex}_

¥ Is g.l. in A

vz 1s q.1, in A

Proef. By the Symmetry Principle (L1)efd (11i), (iv)<ap (v), and

(vide®d» (1). By the x(yz),{(xy)z-Temma and B,10, (1) & (ii1), and gimilarly

({i1) @ (1v) and (V& (vi). @

B8.13 Remark, We could also add to the list of equivalences

(vi1) x is q.1, in @2

(viil) v i q.i. in A%

(ix) =z 1s gq.1i. in h(:r.,y]_
Indeed, x i3 g.1, in AI:F’Z] iff it 15 q.i. in A{'“'} gince the Jordan structures
of these twe algebras coinclde: v(“’“} = = ‘,{uv} and U(u'v} =11
x XUV = x X ouv
A
X

8.14 BRemark: TIf 1& A we can recover the Symmetry Principle from the Shifting

Principle (setting z = 1 4n (1) and (v)). I

Hote that in shifting, an R becomes an L and vice verss:!: =x in A{REY) becomes
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Lz}: in A(Y}, % in ﬁ{LYz] becomes R}rx in A{z}. This corresponds to the fact
that "x q.1i. in sz}" 1s lnvariant under cyclic permutations.

The radieal can alse be characterized by means of homotopes.,

8,15 (Homotope Characterization of the Radical) The following conditiens on

en element z are equivalent:

(1) z & Rad(4)
(i1} = is p.g.1i.
(111i) all a= are q.1.
(iv) all za are q.i.
(v) =z 1is q,1. in all homotopes .ﬁ.[a}

(z)

(vi) the homotope A la a radical algebra

(all its elements are q.i.)

Proof, We already know (1) b (ii) > (111) g (iv); in view of 8.10 we

have (iv) <& (v), and in view of Symretry (v) &P (vi). B

We Indicate the power of these tools by re-proving the results 8.1, 8.4,

BIS‘

8.16 (Proposition) Léet B be a subspace of an alternative zlgebra A. Then
(1) Rad(bah) = [z & bAb | bzb & Rad(A)} when B = bAb i1e an inner ideal.
(i) Rad(B) = {z& B|BzC Rad(4)} when B is a left ideal,

(141i) BRad(B) = B MRad(A) when B is an ideal.

Proof. (i) bAb g.i, in (bAb) {2}#b£b g.i. in A{:E} (b (?.2}}#11 gq.1i.
. ﬁibzb]
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(11) B q.i. In B(z]ﬁﬁ]} q.1, in E{z}I (for €& note bﬂz) = (bz)b q.1i.

implies b q.1.)gHAB q.1, In 2@ gy (7.) ¢ A qui. in 282)

(111) B qui. In B(“]# B q.i. in A{“}ﬁa g1, 10 A (forss, note

BE{E} = aza &B q.1; implles & q.1, in A{z}). £
Wa can alse easily ohtain & new resultk.

8,17 (Lawvere's Theorem) ‘The rtadical of the u,v-homotope of A ia

rad A o [ g A (uv)2(uv) € Rad Al

Proof, =& Rad A“) gapz @ Rad A" (by 819z q.1. 1 all
(a0 | (en)xav)} (o 30 15,4, ax.5.5.) @b (uvdzCuv) q.i. i all

A% by snifting) & (uv)z(uv) € Rad(a). B

This sleight-of-hand with homotopes and shifting becomes important in

Jordan algebras, because there we can no longer talk sbout the preduct xy

but can still tzlk zbout homotopes A{F].
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IV,B Exercises

Prove that 1f B 1s an inner ideal in A which is also a subalgebra then

Rad(B) = {z & B|bzb & Rad A for all b& B},

Daduce Proposition 8.1 from this.
Prove that tha radical of any left—principal inmer ideal B = Ab which
happens to be a subalgebra is

Rad B = {z € B|bz & Rad Al.
Show Z(A) = {z|aza = 0 for all al is a nil ideal in A. Show that if
E<]A then Rad(B)<J A by showing A Rad(B) & 2(B) for B = B/Rad(B).
Show Rad(B) <] A vhen B < A by showing 211 az (a g A, z& Rad(B)) are
r.q.i. in B.
Show the following ere equivalent: (i) =xy,wy are quasi-inverses in A,
(1i) wy=,yw are quasi-inverses in 4, (ii1) =xy,xz are guagi-inverses in A
(z = ywy-y), (iv) y=x,zx are quasi-inverses in A, (v) x,w are quasi-

(x)

inverses in afy), (vi) ¥,z are quasi-inverses in A

(w)

s tvli) u,v are

quazi-inverses in A
A{z)

(u = yry-y), (viii) v,x are quasi-inverses in

(v = xyn-%).

Prove Rad Ab = [z @ Ab|bz § Rad(A)} using = € Rad(Ab)gs z g.1. in all
Lﬂb}(ac]. Deduce Rad Ae = e(Rad(A))e + (1-2)As when e is an idempotent
for which Ae i= a subalgebra.

Give alternate proofs that Bz Bad{A) = z & Rad(B) and z & Rad (B)=tp
bz & Rad(A) (B a left ideal) and =z & B (M Rad(A) e z € Rad(B) (B an ideal).
Extending (8.8), show vﬁu} = Y

¥ x,Ufu)y”
Reprove Kxercises B.1 and 8.2 using homotopes (as in Proposition a4.16).



